Math, asked by kabeerthukral, 8 months ago

if sin theta = 12/13 then evaluate (2 sin theta -3 cos theta)/4 sin theta - 9 cos theta​

Attachments:

Answers

Answered by atulyadavak2002
25

Answer:

the answer is as follows

I hope this will help you

Attachments:
Answered by mysticd
31

 Given \: sin \theta = \frac{12}{13} \: --(1)

/* By Trigonometric Identity */

 \boxed{\pink{ cos^{2} \theta = 1 - sin^{2} \theta }}

 i) Cos^{2} \theta

 = 1 - sin^{2} \theta

 = 1 - \Big( \frac{12}{13}\Big)^{2}

 = 1 -  \frac{144}{169}

 = \frac{169 - 144}{169}

 = \frac{25}{169}

 ii ) \blue {cos \theta}

 = \sqrt{ \Big( \frac{25}{169}\Big)}

 \blue {= \frac{5}{13} }\: --(2)

 Now , \red { Value \:of \: \frac{2sin \theta - 3cos \theta }{ 4sin \theta - 9 cos \theta } }

 = \frac{ 2 \times \frac{12}{13} - 3 \times \frac{5}{13}}{ 4 \times \frac{12}{13} - 9 \times \frac{5}{13}}

 = \frac{ \frac{24}{13} - \frac{15}{13}}{\frac{48}{13} - \frac{45}{13}}

 = \frac{\frac{24-15}{\cancel {13}}}{\frac{48-45}{\cancel {13}}}

 = \frac{ 9}{3}

 = 3

Therefore.,

  \red { Value \:of \: \frac{2sin \theta - 3cos \theta }{ 4sin \theta - 9 cos \theta } }\green { = 3 }

•••♪

Similar questions