if sin theta = 3/4 , prove that whole root cosec^theta - cot^theta / sec^theta - 1 =root 7 / 3
Answers
Step-by-step explanation:
We can solve this in two ways, either by written proof or visual proof,
Let's see both,
Method 1 (Written proof)
We have,
Sin θ = (3/4)
We know that,
Sin² θ + Cos² θ = 1
So,
Cos² θ = 1 - Sin² θ
Cos² θ = 1 - (3/4)²
Cos² θ = 1 - (9/16)
Cos² θ = (16/16) - (9/16)
Cos² θ = (16 - 9)/16
Cos² θ = 7/16
Cos θ = √(7/16)
Cos θ = √7/√16
Cos θ = √7/4
Now,
√((Cosec² θ - Cot² θ)/(Sec² θ - 1))
We know that,
1 + Cot² θ = Cosec² θ
Cosec² θ - Cot² θ = 1 ------ 1
Also,
1 + Tan² θ = Sec² θ
Sec² θ - 1 = Tan² θ ------ 2
Hence,
From eq.1 and eq.2 we get,
√((Cosec² θ - Cot² θ)/(Sec² θ - 1)) = √(1/Tan² θ)
We know that,
Tan θ = Sin θ/Cos θ
Tan θ = (3/4)/(√7/4)
Tan θ = 3/√7
Now,
√(1/Tan² θ) = √(1/(Tan θ)²)
= √(1/(3/√7)²
= √(1/(9/7))
= √(7/9)
= (√7)/3
Hence proved.
Method 2 (Visual Proof)
(Do refer the above image)
Now, we know that,
Sin θ = (3/4)
So,
Let AB = 3k and AC = 4k
Then,
By Pythagoras theorem,
AB² + BC² = AC²
(3k)² + BC² = (4k²)
BC² = (4k²) - (3k²)
BC² = 16k² - 9k²
BC² = 7k²
BC = √7k²
BC = k√7
Now,
√((Cosec² θ - Cot² θ)/(Sec² θ - 1))
We know that,
1 + Cot² θ = Cosec² θ
Cosec² θ - Cot² θ = 1 ------ 1
Also,
1 + Tan² θ = Sec² θ
Sec² θ - 1 = Tan² θ ------ 2
Hence,
From eq.1 and eq.2 we get,
√((Cosec² θ - Cot² θ)/(Sec² θ - 1)) = √(1/Tan² θ)
Now,
Tan θ = (3k/(k√7))
Canceling k, we get,
Tan θ = (3/√7)
Now,
Tan² θ = (3/√7)²
Tan² θ = (9/7)
So,
√(1/Tan² θ) = √(1/(9/7))
= √(7/9)
= √7/√9
= (√7)/3
Hence proved.
Hope it helped and believing you understood it........All the best