Math, asked by yashvantkumarp80, 7 months ago

If sin theta=3/4 then, cos theta and cot theta. Find value​

Answers

Answered by anjukrishusachin
8

Step-by-step explanation:

  \sin\theta =  \frac{3}{4}  =  \frac{perpendicular}{hypotenuse}  \\ in \: a \: right \: triangle \:   \\ hypotenuse = 4 \: unit \\ perpendicular = 3 \: unit \\ base = to \: find\\ base \:  =  \sqrt{ {hypotenuse}^{2} -  {perpendicular}^{2}  }  \\  =  \sqrt{ {4}^{2} -  {3}^{2}  }  \\  =  \sqrt{16 - 9}  \\  =  \sqrt{7}  \: unit \\  \\ so \:  \cos \theta =  \frac{base}{hypotenuse}  \\  =   \frac{ \sqrt{7} }{4}  \\  \cot \theta =  \frac{ \cos \theta }{\ \sin\theta}  =  \frac{ \frac{ \sqrt{7} }{4} }{ \frac{3}{4} }   \\  \cot \theta =  \frac{ \sqrt{7} }{4}  \times  \frac{4}{3}  =  \frac{ \sqrt{7} }{3}

Hope it helps you mate

please mark as brainliest

Answered by ChaitanyaRamS
1
sin^2theta + cos^2theta =1
(3/4)^2-1=-cos^2theta
(9/16)-1 = -cos^2theta
-7/16= -cos^2theta
cos^2theta=7/16
cos theta=root7/4
Similar questions