if sin theta = 3/5 and cos theta = 4/5, then find tan theta and cot theta
Answers
Answered by
6
Answer:
tan@=sin@÷cos@
tan@=(3÷5)÷(4÷5)
tan@=3/4
cot@=4/3
HOPE IT HELPS
MARK ME AS BRAINLIEST.
Answered by
12
Given:
- sinФ = 3/5
- cosФ = 4/5
To find:
The value of
- tanФ
- cotФ
So,
We know that,
sinФ = P/H
cosФ = B/H
tanФ = P/B
cotФ = B/P
Now,
sinФ = P/H = 3/5
So, let P = 3k and H = 5k
We can get B,
⇒ B² = H² - P²
⇒ B² = (5k)² - (3k)²
⇒ B² = 25k² - 9k²
⇒ B² = 16k²
⇒ B = 4k
And,
Also cosФ = B/H = 4/5
B = 4k and H = 5k
So,
P = 3k , B = 4k , H = 5k
Now,
- Finding
tanФ = P/B = 3k/4k = 3/4
And
cotФ = B/P = 4k/3k = 4/3
- - - - - - - -
More information:
- P = Perpendicular
- B = Base
- H = Hypotenuse
Also,
- sinФ = 1/(cosecФ)
- cosecФ = 1/(sinФ)
- cosФ = 1/(secФ)
- secФ = 1/(cosФ)
- tanФ = 1(cotФ)
- cotФ = 1/(tanФ)
- sin(90° - Ф) = cosФ
- cos(90° - Ф) = sinФ
- tan(90° - Ф) = cotФ
- cot(90° - Ф) = tanФ
- sec(90° - Ф) = cosecФ
- cosec(90° - Ф) = secФ
Similar questions
Business Studies,
4 months ago
Physics,
8 months ago
Science,
8 months ago
Geography,
1 year ago
Political Science,
1 year ago