Math, asked by mdsalik43, 7 months ago

if sin theta = 3/5 and cos theta = 4/5, then find tan theta and cot theta​

Answers

Answered by anant5056
6

Answer:

tan@=sin@÷cos@

tan@=(3÷5)÷(4÷5)

tan@=3/4

cot@=4/3

HOPE IT HELPS

MARK ME AS BRAINLIEST.

Answered by BloomingBud
12

Given:

  • sinФ = 3/5
  • cosФ = 4/5

To find:

The value of

  1. tanФ
  2. cotФ

So,

We know that,

sinФ = P/H

cosФ = B/H

tanФ =  P/B

cotФ = B/P

Now,

sinФ = P/H = 3/5

So, let P = 3k and H = 5k

We can get B,

⇒ B² = H² - P²

⇒ B² = (5k)² - (3k)²

⇒ B² = 25k² - 9k²

⇒ B² = 16k²

⇒ B = 4k

And,

Also cosФ = B/H = 4/5

B = 4k and H = 5k

So,

P = 3k , B = 4k , H = 5k

Now,

  • Finding

tanФ = P/B = 3k/4k = 3/4

And

cotФ = B/P = 4k/3k = 4/3

- - - - - - - -

More information:

  • P = Perpendicular
  • B = Base
  • H = Hypotenuse

Also,

  • sinФ = 1/(cosecФ)
  • cosecФ = 1/(sinФ)
  • cosФ = 1/(secФ)
  • secФ = 1/(cosФ)
  • tanФ = 1(cotФ)
  • cotФ = 1/(tanФ)

  • sin(90° - Ф) = cosФ
  • cos(90° - Ф) = sinФ
  • tan(90° - Ф) = cotФ
  • cot(90° - Ф) = tanФ
  • sec(90° - Ф) = cosecФ
  • cosec(90° - Ф) = secФ
Similar questions