Math, asked by thisisdebarshijds, 1 day ago

If sin theta =3/5 and theta is an acute angle find ; cos theta and tan theta

Answers

Answered by vikkiain
1

cos \theta =  \frac{4}{5}  \:  \:  \: and \:  \:  \: tan \theta =  \frac{3}{4}

Step-by-step explanation:

Given, \:  \: sin \theta =  \frac{3}{5}  \\ we \:  \: know \:  \:  \boxed{cos^{2} \theta = 1 - sin^{2} \theta } \\ Now, \:  \:  \: putting \:  \: value \\ cos^{2} \theta = 1 - ( \frac{3}{5} )^{2}  \\ cos^{2} \theta = 1 -  \frac{9}{25}  \\ cos^{2} \theta =  \frac{25 - 9}{25}  \\ cos^{2} \theta =  \frac{16}{25}  \\ cos \theta =  \sqrt{ \frac{16}{25} }  \\ \boxed{ cos \theta =   \frac{4}{5}  } \\ Now, \:  \:  \: tan \theta =  \frac{sin \theta}{cos \theta}  \\ putting \:  \: values \\ tan \theta =  \frac{ \frac{3}{5} }{ \frac{4}{5} }  \\ tan \theta =  \frac{3}{5} \times  \frac{5}{4}   \\  \boxed{tan \theta =  \frac{3}{4} }

Answered by prakharuts015
0

Concept: This is the question of Trigonometry.  Trigonometry is based on a Right-angled triangle. In a right-angled triangle Hypotenuse is the largest side and it is given by

hypotenuse^{2}= perpendicular^{2}+base^{2}

and other related terms are

sinФ= \frac{Perpendicular}{hypotenuse} , cosФ=\frac{base}{hypotenuse}, tanФ= \frac{perpendicular}{base}

Given:

sinФ= \frac{3}{5} ,  perpendicular= 3, hypotenuse=5

To find:

CosФ and tanФ

Solution:

base = \sqrt{hypotenuse^{2}-perpendicular^{2}  }
        = \sqrt{5^{2}-3^{2} }

        = \sqrt{25-9} \\\\= \sqrt{16\\\\= 4

CosФ = \frac{4}{5}  ,  tanФ= \frac{3}{4}

Similar questions