Math, asked by debashreebanerjee78, 9 months ago

if sin theta=3/5 find the value of tan theta + cot theta/ tan theta-cot theta​

Answers

Answered by Anonymous
2

Step-by-step explanation:

sinΘ =  \frac{3}{5}   \\  \\ cosΘ =  \sqrt{1 -  {sin}^{2}Θ }   \\  =  \sqrt{1 -  {( \frac{3}{5} )}^{2} }  \\   =  \sqrt{1 -  \frac{9}{25} } \\   =  \sqrt{ \frac{16}{25} }  \\  =  \frac{4}{5}  \\   \\ tanΘ =  \frac{sinΘ}{cosΘ} =  \frac{3}{5}   \times  \frac{5}{4} =  \frac{3}{4}  \\  \\  cot Θ =  \frac{4}{3} \\ \\   = \frac{tan Θ  + cotΘ\: }{tanΘ - cotΘ}  \\  \\  =  \frac{ \frac{3}{4} +  \frac{4}{3}  }{ \frac{3}{4} -  \frac{4}{3}  }  \\  \\  =  \frac{ \frac{25}{12} }{ -  \frac{7}{12} }  \\  \\  =  -  \frac{25}{7}

Similar questions