Math, asked by yash510, 1 year ago

if sin theta = 3 upon 4 prove that root cosec square theta - cot square theta upon sec square theta -1 =root 7 upon 3

Answers

Answered by vishalkhurana1
178
here is your answer...
Attachments:

yash510: thnq so much
vishalkhurana1: select the answer as branliest if it will help you
yash510: ok
Answered by mysticd
56

Solution:

 Given ,\\sin\theta=\frac{3}{4}---(1)

cos^{2}\theta \\= 1-sin^{2}\theta\\=1-\big(\frac{3}{4}\big)^{2}\\=1-\frac{9}{16}\\=\frac{16-9}{16}\\=\frac{7}{16}

cos\theta= \sqrt{\frac{7}{16}}\\=\frac{\sqrt{7}}{4}--(2)

Now, \\Value \: of \:\sqrt{ \frac{cosec^{2}\theta-cot^{2}\theta}{sec^{2}\theta-1}}

=\sqrt{\frac{1}{tan^{2}\theta}}

=\frac{1}{tan\theta}\\=\frac{1}{\frac{sin\theta}{cos\theta}}

=\frac{cos\theta}{sin\theta}\\=\frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}}

=\frac{7}{4} \times \frac{3}{4}

=\frac{\sqrt{7}}{3}

Therefore,

Now, \\Value \: of \:\sqrt{ \frac{cosec^{2}\theta-cot^{2}\theta}{sec^{2}\theta-1}} = \frac{\sqrt{7}}{3}

•••♪

Similar questions