If sin theta = 4/5 , find the value of 4 tan theta - 5 cos theta /sec theta + 4 cot theta
Answers
Answered by
1
Answer:
Answered by
6
EXPLANATION.
⇒ Sin∅ = 4/5.
As we know that,
Sin∅ = perpendicular/hypotenuse.
By using Pythagoras theorem, we get.
⇒ H² = P² + B².
Put the value in equation, we get.
⇒ (5)² = (4)² + B².
⇒ 25 = 16 + B².
⇒ 25 - 16 = B².
⇒ 9 = B².
⇒ B = √9.
⇒ B = 3.
Sin∅ = perpendicular/hypotenuse = 4/5.
Cos∅ = base/hypotenuse = 3/5.
tan∅ = perpendicular/base = 4/3.
Cosec∅ = hypotenuse/perpendicular = 5/4.
Sec∅ = hypotenuse/base = 5/3.
Cot∅ = base/perpendicular = 3/4.
Value of = 4tan∅ - 5Cos∅/Sec∅ + 4Cot∅.
⇒ 4(4/3) - 5(3/5)/(5/3) + 4(3/4).
⇒ 16/3 - 3/5/3 + 3.
⇒ 16 - 9/3/5 + 9/3.
⇒ 7/3/14/3.
⇒ 7/3 X 3/14.
⇒ 7/14.
⇒ 1/2.
Similar questions