Math, asked by SaadTramboo4938, 1 year ago

If sin theta = 4/5 , find the value of 4tan theta -5 cos theta/ sec theta plus 4 cot theta

Answers

Answered by desiboyz3
85
1/2 will be the answer
Attachments:
Answered by pinquancaro
122

Answer:

\frac{4\tan\theta-5\cos\theta}{\sec\theta+4\cot\theta}=\frac{1}{2}

Step-by-step explanation:

Given : \sin\theta=\frac{4}{5}

To find : The value of \frac{4\tan\theta-5\cos\theta}{\sec\theta+4\cot\theta}

Solution :

\sin\theta=\frac{4}{5}

According to trigonometric properties,

\sin\theta=\frac{4}{5}=\frac{P}{H}

i.e Perpendicular P=4, Hypotenuse H=5

Apply Pythagoras theorem,

B=\sqrt{H^2-P^2}

B=\sqrt{5^2-4^2}

B=\sqrt{25-16}

B=\sqrt{9}

B=3

We know,

\cos\theta=\frac{B}{H}=\frac{3}{5}

\tan\theta=\frac{P}{B}=\frac{4}{3}

\cot\theta=\frac{B}{P}=\frac{3}{4}

\sec\theta=\frac{H}{B}=\frac{5}{3}

Substitute the value in the expression,

=\frac{4(\frac{4}{3})-5(\frac{3}{5})}{(\frac{5}{3})+4(\frac{3}{4})}

=\frac{\frac{16}{3}-3}{\frac{5}{3}+3}

=\frac{\frac{16-9}{3}}{\frac{5+9}{3}}

=\frac{\frac{7}{3}}{\frac{14}{3}}

=\frac{7}{3}\times \frac{3}{14}

=\frac{1}{2}

Therefore, \frac{4\tan\theta-5\cos\theta}{\sec\theta+4\cot\theta}=\frac{1}{2}

Similar questions