Math, asked by podonacorn19, 9 months ago

if sin theta=4/5 what is tan theta

Answers

Answered by TrickYwriTer
2

Step-by-step explanation:

\huge\underline{Answer-}

 \sin\theta =  \frac{Perpendicular}{Hypotenuse}  \\  \\  \bold{Given - } \\  \\  \sin\theta =  \frac{4}{5}  \\  \\ \underline{ It  \: means,} \\  \\   \fbox\bold{Perpendicular = 4}  \\  \\ And  \\  \\  \fbox\bold{Hypotenuse = 5} \\  \\  \bold{We \: need \: to \: find \: Base} \\  \\ (AC) {}^{2}  = (AB) {}^{2}  + (BC) {}^{2}  \\  \\  (BC) {}^{2}  = (AC) {}^{2}  - (AB) {}^{2}  \\  \\ BC =  \sqrt{(5) {}^{2}  - (4) {}^{2} }  \\  \\ BC =  \sqrt{25 - 16}  \\  \\ BC =  \sqrt{9}  \\  \\  \fbox\bold {BC = 3}

 \bold{To  \: Find  - } \\  \\  \tan \theta =  \:  ? \\  \\   \fbox\bold{\tan \theta =  \frac{Perpendicuar}{Base} } \\  \\   \fbox\bold{\tan \theta =  \frac{4}{3} }

NOTE -

Triangle ABC is a Right-angle Triangle

Attachments:
Answered by tahseen619
10

Answer:

4/3

Step-by-step explanation:

Given:

sin∅ = 4/5

To find:

tan∅

Solution:

We know that,

sin∅ = Perpendicular(p) / Hypotenuse(h)

Therefore, Base(b) = √(h²-p²)

= √(5²-4²)

= √(25-16)

= √9

= 3

Now, tan∅ = p/b

or, tan∅ = 4/3

The required value of tan∅ is 4/3 .

Similar questions