Math, asked by abhijeetvashish5136, 2 months ago

If sin theta =5/13,find the value of 1+tan theta/1-tan theta

Answers

Answered by jaidansari248
2

(i \: put \: x \: in \: place \: of \:   \theta \: for \: my \: convient) \\  \sin(x)  =  \frac{5}{13}  \\  \cos(x)  =  \sqrt{1 -  \sin {}^{2} (x) }  \\  =  \sqrt{1 -  { (\frac{5}{13} )}^{2} }  \\  =  \sqrt{ \frac{{13 }^{2}  -  {5}^{2} }{ {13}^{2} } }  \\   \cos(x) =  \sqrt{ \frac{12 {}^{2} }{ {13}^{2} } }  =  \frac{12}{13 }  \\   \tan(x)  =  \frac{ \sin(x) }{ \cos(x) }  \\  =  \frac{  \: \frac{5}{13}  \: }{ \frac{12}{13} }  =  \frac{5}{12}

 \frac{1 +  \tan(x) }{1 -  \tan(x) } \\   =  \ \frac{1 +  \frac{5}{12} }{1 -  \frac{ 5 }{12} }   \\  =  \frac{ \:  \:  \:  \:  \frac{12 + 5}{12}  \:  \:  \:  \: }{ \frac{12 - 5}{12} }  =  \frac{17}{7}

Similar questions