Math, asked by aditibajoria1601, 1 year ago

if sin theta= 5/13
find the value of tan theta+ 1/ cos theta

Answers

Answered by Anonymous
3

Given that :

SinA = 5/13 = P/H

By Pythagoras theoram :

= +

=> 13² = 5²+

=> = 169-25 = 144

=> B = 12

then, tanA = P/B = 5/12 and cosA = B/H = 12/13

Now, tanA + 1/cosA

 =  >  \frac{5}{12}  +  \frac{1}{ \frac{12}{13} }  \\  \\   =  >  \frac{5}{12}  +  \frac{13}{12}  \\  \\  =  >  \frac{18}{12}  =  \frac{3}{2}

I hope it will be helpful for you ✌️✌️

Mark it as brainliest and.....

Fóllòw ☺️☺️

Answered by as1965286p7d7zu
1

Answer:

WE HAVE sinθ = perpendicular  /  hypotenuse

                  >> sinθ = 5 /13

so, by pythagoras theorem,

  hypotenuse²=perpendicular²+base²

   >>   13²=5²+b²

 >>  169-25=b²

 >>   144 = b²

  >>  b=12

   

Step-by-step explanation:

hence,

  >>  tanθ =5 / 12

   >> cosθ = 12 / 13

putting values,

      >>     (  5 / 12) + 1 / (12 / 13)

        >>    (5 / 12) + (13/ 12)

       >>   18 / 12

       >>  3 /2

   

       

i hope it helps.

Similar questions