Math, asked by vidula70, 8 months ago

if sin theta =5 by 13 and theta is an acute angle, find the value of tan theta +1 by cos theta

Answers

Answered by ishuishu151151
7

Answer:

1.5

Step-by-step explanation:

sin theta =5 / 13 =0.3846

tan theta +1 / cos theta

(sin theta/cos theta) + (1 / cos theta)

(sin theta + 1)/cos theta

(0.3846 + 1)/cos theta

1.3846/cos theta = x

squaring,

(1.3846)^2/cos^2 theta = x^2

1.9171/1-sin^2 theta = x^2

1.9171/1-(0.3752)^2 = x^2

1.9171/0.8592 = x^2

2.231 = x^2

x =1.4937 ~ 1.5

I think so dr...

what is the actual ans...

Answered by knjroopa
0

Step-by-step explanation:

Given If sin theta = 5 / 13 and theta is an acute angle, find the value of tan theta + 1 / cos theta

  • So sin theta = 5/13
  • We need to find the value of tan theta + 1 / cos theta
  • So we have the identity
  •                    sin^2 theta + cos^2 theta = 1
  •                        (5/13)^2 + cos^2 theta = 1
  •                                     cos^2 theta = 1 – (5/13)^2
  •                                     cos^2 theta = 1 – 25 / 169
  •                                     cos^2 theta = 144 / 169
  •                                     Or cos theta = 12/13
  •        Now we have
  •                                   tan theta + 1/cos theta
  •                                      sin theta + 1 / cos theta
  •                                           5/13 + 1/12/13
  •                                                    18 / 13 x 13 / 12
  •                                                         = 18 / 12
  •                                                         = 3/2
  • Also it can be done by using pythagoras theorem

Reference link will be

https://brainly.in/question/14745776

Similar questions