Math, asked by tharitha, 2 months ago

if sin theta = 8/17 then find cos theta​

Answers

Answered by tanishthasharma2006
17

Answer:

Sin θ = 8/17

Sin = opposite / hypotenuse

USING PYTHAGORAS !

AC² = AB² + BC²

17² = AB² + 8²

AB² = 17² - 8²

AB² = 289 - 64

AB² = √225

AB = 15

When we considered the t-ratios of ∠BAC = θ , WE HAVE :-

Base = BC = 8

Perpendicular = AB = 15

And Hypotenuse = AC = 17.

Therefore, Sin θ = 8/17

Cos θ = 15/17

Tan θ = 8/15

Cosec θ = 17/8

Sec θ =17/15

Cot θ = 15/8

Answered by LaCheems
34

{\huge{\red{\boxed{A}{\orange{\boxed{N}{\green{\boxed{S}{\blue{\boxed{W}{\gray{\boxed{E}{\purple{\boxed{R→}}}}}}}}}}}}}}

To Solve:

  • if sin theta = 8/17 then find cos theta

Given:

  • Sinθ = 8/17

Solⁿ:

Sinθ - P/H

Perpendicular= 8

Hypotenuse= 17

Pythagoras Theorem :-

= H² = B² + P²

= (17)² = B² + (8)²

= 289 = B² + 64

= 289 - 64 = B²

= 225 = B²

= √225 = B

= 15 = Base

So,

Cosθ = B/H

 \frac{15}{17}

HOPE IT HELPS

MARK BRAINLIEST PLS :)

Attachments:
Similar questions