if sin theta = 8/17 then find cos theta
Answers
Answered by
17
Answer:
Sin θ = 8/17
Sin = opposite / hypotenuse
USING PYTHAGORAS !
AC² = AB² + BC²
17² = AB² + 8²
AB² = 17² - 8²
AB² = 289 - 64
AB² = √225
AB = 15
When we considered the t-ratios of ∠BAC = θ , WE HAVE :-
Base = BC = 8
Perpendicular = AB = 15
And Hypotenuse = AC = 17.
Therefore, Sin θ = 8/17
Cos θ = 15/17
Tan θ = 8/15
Cosec θ = 17/8
Sec θ =17/15
Cot θ = 15/8
Answered by
34
To Solve:
- if sin theta = 8/17 then find cos theta
Given:
- Sinθ = 8/17
Solⁿ:
Sinθ - P/H
Perpendicular= 8
Hypotenuse= 17
Pythagoras Theorem :-
= H² = B² + P²
= (17)² = B² + (8)²
= 289 = B² + 64
= 289 - 64 = B²
= 225 = B²
= √225 = B
= 15 = Base
So,
Cosθ = B/H
ㅤ
ㅤ
HOPE IT HELPS
MARK BRAINLIEST PLS :)
Attachments:
Similar questions
Hindi,
1 month ago
English,
1 month ago
Hindi,
2 months ago
Business Studies,
2 months ago
Science,
10 months ago
Social Sciences,
10 months ago