If sin theta = a and sin2theta= b, find the expression for cos theta in terms of a and b . Hence find a relation between a and b not involving theta
Answers
Answer:
Step-by-step explanation:
I am taking Theta to be 'A'
According to the Question,
⇒ Sin A = a
⇒ Sin 2A = b
We need to find Cos A in terms of a and b.
According to trigonometric identity,
⇒ Sin 2A = 2 × Sin A × Cos A
Substituting the values we get,
⇒ b = 2 × a × Cos A
⇒ Cos A = b / 2a
We know that,
⇒ Sin²A + Cos²A = 1 [ Trigonometric Identity ]
⇒ a² + ( b / 2a )² = 1
⇒ a² + b² / 4a² = 1
Taking LCM we get,
⇒ ( 4a⁴ + b² ) / 4a² = 1
⇒ 4a⁴ + b² = 4a² [ Cross multiplying the denominator ]
⇒ 4a⁴ - 4a² = -b²
⇒ 4a² ( a² - 1 ) = -b²
⇒ 4a² ( 1 - a² ) = b²
⇒ √ ( 4a² ( 1 - a² )) = √ b²
⇒ 2a √ ( 1 - a² ) = b
This is the required relation.
Hope it helped !!
Have a great day :)
- sinØ = a
- sin2Ø = b
Here.. Ø = theta
_____________ [ GIVEN ]
• We have to find the relation between a and b without involving theta.
_____________________________
We know that..
→ sin2Ø = 2 sinØ cosØ
And we have given that sinØ = a
So,
→ sin2Ø = 2a cosØ
→ sin2Ø/2a = cosØ
→ cosØ = sin2Ø/2a
Also, sin2Ø = b
→ cosØ = b/2a _______ (eq 1)
______________________________
We also know that..
→ sin²Ø + cos²Ø = 1
Put value of sinØ and cosØ in above formula
→ (a)² + (b/2a)² = 1
→ a² + (b²/4a²) = 1
Take LCM
→ (4a⁴ + b²)/4a² = 1
→ 4a⁴ + b² = 4a²
→ b² = 4a² - 4a⁴
→ b² = 4a²(1 - a²)
______________________________
b² = 4a²(1 - a²) is the relation between a and b without involving theta (Ø).
___________ [ ANSWER ]
______________________________