Math, asked by ysrinivasarao9856, 6 months ago

if sin theta = a/b+c then show that cos theta =2√bc/b+c cosA/2​

Answers

Answered by jainkittu495
9

Step-by-step explanation:

i hope this will help you

Attachments:
Answered by Manmohan04
3

Given,

\[\sin \theta  = \frac{a}{{b + c}}\]

Show that,

\[\cos \theta  = \frac{{2\sqrt {bc} }}{{b + c}}\cos \frac{A}{2}\]

Solution,

\[\cos \theta  = \sqrt {1 - {{\sin }^2}\theta } \]

\[ \Rightarrow \cos \theta  = \sqrt {1 - {{\left( {\frac{a}{{b + c}}} \right)}^2}} \]

\[ \Rightarrow \cos \theta  = \sqrt {\frac{{{b^2} + {c^2} + 2bc - {a^2}}}{{{{\left( {b + c} \right)}^2}}}} \]

\[ \Rightarrow \cos \theta  = \frac{{\sqrt {{b^2} + {c^2} - {a^2} + 2bc} }}{{b + c}}\]

Know that, \[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]

\[ \Rightarrow \cos \theta  = \frac{{\sqrt {2bc\cos A + 2bc} }}{{b + c}}\]

\[ \Rightarrow \cos \theta  = \frac{{\sqrt {2bc\left( {1 + \cos A} \right)} }}{{b + c}}\]

\[ \Rightarrow \cos \theta  = \frac{{\sqrt {2bc\left( {1 + 2{{\cos }^2}\left( {\frac{A}{2}} \right) - 1} \right)} }}{{b + c}}\]

\[ \Rightarrow \cos \theta  = \frac{{\sqrt {2bc \times \left( {2{{\cos }^2}\left( {\frac{A}{2}} \right)} \right)} }}{{b + c}}\]

\[ \Rightarrow \cos \theta  = \frac{{2\sqrt {bc} }}{{b + c}}\cos \left( {\frac{A}{2}} \right)\]

Hence the given condition is proved.

Similar questions