Math, asked by hiraf2906, 30 days ago

If sin theta=a/b then prove that sec theta+ tan theta = √b+a/√b-a

Answers

Answered by sraza1434
0

EXPLANATION:

In detail solution.

let \: theta =  \alpha  \\  \sin\alpha =  \frac{a}{b} =  \frac{p}{h} \\ b =  \sqrt{ {b}^{2}  -   {a}^{2}  }  \\ now \\  \sec\alpha  +  \tan\alpha  =  \frac{h}{b}  +  \frac{p}{b}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{h + p}{b}  \\  \:  \:  \:  \:  =  \frac{b + a}{ \sqrt{ {b}^{2}  -  {a}^{2}  } } \\  =  \:  \:   \frac{ \sqrt{ {(b + a)}^{2} } }{ \sqrt{ {b}^{2}  -  {a}^{2} } } \\  =  \sqrt{ \frac{b + a}{b - a} }

Answered by hemanji2007
3

Topic:-

Trigonometry

Question:-

if \: sin \theta  =  \frac{a}{b} then \: prove \: sec \theta + tan \theta \:   =  \frac{ \sqrt{b + a} }{ \sqrt{b - a} }

Answer:-

First Taking LHS

sec \theta + tan \theta

 =  \frac{1}{cos \theta}  +  \frac{sin \theta}{cos \theta}

 =  \frac{1 + sin \theta}{cos \theta}

 =  \frac{1 + sin \theta}{ \sqrt{1 -  {sin}^{2}theta } }

we \: know \: that \:  \\  \\ sin \theta  =  \frac{a}{b}

  = \frac{1 +  \frac{a}{b} }{ \sqrt{1 -  { (\frac{a}{b} )}^{2} } }

 =  \frac{ (\frac{b + a}{b}) }{ \sqrt{ \frac{ {b}^{2} -  {a}^{2}  }{ {b}^{2} } } }

 =  \frac{ \frac{b + a}{b} }{ \frac{ \sqrt{ {b}^{2} -  {a}^{2}  } }{ \sqrt{ ({b}^{2}) } } }

 =  \frac{ \frac{b + a}{b} }{ \frac{ \sqrt{b + a} \times  \sqrt{b - a}  }{b} }

 =  \frac{b + a}{ \sqrt{b + a} \times  \sqrt{b - a}  }

 =  \frac{ \sqrt{b + a} }{ \sqrt{b - a} }

  = \sqrt{ \frac{b + a}{b - a} }

= RHS

Hence Proved//

More Information:-

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Similar questions