Math, asked by debnathmanisha76, 8 months ago

If sin theta & cos theta are roots of the equations ax2 + bx+c=0
prove that a ²-b2 +2ac=0.​

Answers

Answered by Anonymous
5

Answer:

Given:

\sf{sin\theta \ and \ cos\theta \ are \ roots \ of}

\sf{the \ equation \ ax^{2}+bx+c=0}

Solution:

\sf{Sum \ of \ roots=\dfrac{b}{a}}

\sf{\therefore{sin\theta+cos\theta=\dfrac{b}{a}...(1)}}

\sf{Product \ of \ roots=\dfrac{c}{a}}

\sf{\therefore{sin\theta.cos\theta=\dfrac{c}{a}...(2)}}

\sf{From \ equation (1) \ we \ get,}

\sf{\dfrac{b}{a}=sin\theta+cos\theta}

\sf{\therefore{b=a(sin\theta+cos\theta)}}

\sf{On \ squaring \ both \ sides \ we \ get,}

\sf{\longmapsto{b^{2}=a^{2}(sin\theta+cos\theta)^{2}}}

\sf{\underline{\underline{To \ prove:}}}

\sf{a^{2}-b^{2}+2ac=0}

\sf{\underline{\underline{Proof:}}}

\sf{L.H.S.=a^{2}-b^{2}+2ac}

\sf{Substitute \ b^{2}=a^{2}(sin\theta+cos\theta)^{2}}

\sf{=a^{2}-a^{2}(sin\theta+cos\theta)^{2}+2ac}

\sf{By \ identity \ (a+b)^{2}=a^{2}+b^{2}+2ab}

\sf{=a^{2}-a^{2}(sin^{2}\theta+cos^{2}\theta+2sin\theta.cos\theta)+2ac}

\sf{By \ Trigonometric \ identity}

\sf{sin^{2}\theta+cos^{2}\theta=1}

\sf{=a^{2}-a^{2}(1+2sin\theta.cos\theta)+2ac}

\sf{From \ equation (3), \ we \ get}

\sf{=a^{2}-a^{2}(1+\dfrac{2c}{a})+2ac}

\sf{=a^{2}-a^{2}-2ac+2ac}

\sf{=0}

\sf{=R.H.S.}

\sf{\underline{\underline{Hence, \ proved.}}}

\sf\purple{\tt{a^{2}-b^{2}+2ac=0}}

Similar questions