If sin theta - cos theta = 0, and sec theta + cosec theta = x, then what is the value of x
Ans. :- 2√2
Answers
Answered by
41
Solution :
Here I am using A instead of theta.
Given sinA - cosA = 0
=> sinA = cosA
=> sinA = sin( 90 - A )
=> A = 90 - A
=> A + A = 90
=> 2A = 90°
=> A = 45°
Now ,
x = sec A + cosec A
= sec 45° + cosec 45°
= √2 + √2
= 2√2
Therefore ,
x = 2√2
••••••
Here I am using A instead of theta.
Given sinA - cosA = 0
=> sinA = cosA
=> sinA = sin( 90 - A )
=> A = 90 - A
=> A + A = 90
=> 2A = 90°
=> A = 45°
Now ,
x = sec A + cosec A
= sec 45° + cosec 45°
= √2 + √2
= 2√2
Therefore ,
x = 2√2
••••••
Anonymous:
Nice short process
Answered by
18
⭐⭐⭐⭐⭐ ANSWER ⭐⭐⭐⭐⭐
Let us consume theta to be "p".
Now proceed.
Given, sin p - cos p = 0
=> (sin p - cos p)² = 0²
=> sin²p + cos²p = 2 sin p cos p
=> 1/2 = sin p cos p
Also, (sin p + cos p)²
= sin²p + cos²p + 2 sin p cos p
= 1 + 2 (1/2)
= 1 + 1
= 2
Therefore, (sin p + cos p) = √2
Now, sec p + cosec p = x
=> 1/cos p + 1/sin p = x
=> (sin p + cos p) / sin p cos p = x
=> 2√2 = x
==================================
⭐⭐⭐ ALWAYS BE BRAINLY ⭐⭐⭐
==================================
Let us consume theta to be "p".
Now proceed.
Given, sin p - cos p = 0
=> (sin p - cos p)² = 0²
=> sin²p + cos²p = 2 sin p cos p
=> 1/2 = sin p cos p
Also, (sin p + cos p)²
= sin²p + cos²p + 2 sin p cos p
= 1 + 2 (1/2)
= 1 + 1
= 2
Therefore, (sin p + cos p) = √2
Now, sec p + cosec p = x
=> 1/cos p + 1/sin p = x
=> (sin p + cos p) / sin p cos p = x
=> 2√2 = x
==================================
⭐⭐⭐ ALWAYS BE BRAINLY ⭐⭐⭐
==================================
Similar questions