Math, asked by taanuranga7537, 1 year ago

If sin theta -cos theta =1/2.then find the value of 1/sintheta+cos theta

Answers

Answered by stevenklm
72

Answer:

\frac{1}{sinA+cosA}=\frac{2}{\sqrt{7} }

Step-by-step explanation:

First we need to know the following TRIGONOMETRIC IDENTITY:

sin^{2}A+cos^{2}A=1

Now we need to find an equality on our first equation.

If, sinA-cosA=\frac{1}{2}, we can square both sides of the equation resulting in:

sin^{2}A-2sinAcosA+cos^{2}A=\frac{1}{4}   \\ sin^{2}A+cos^{2}A-2sinAcosA=\frac{1}{4}

Replacing the TRIGONOMETRIC IDENTITY:

1-2sinAcosA=\frac{1}{4} \\ -2sinAcosA=\frac{1}{4}-1\\ 2sinAcosA=1-\frac{1}{4}

------------------------------------------------------------------------------------------------

Now we need to transform the second equation, REMEBER we can square a number and root-extract it at the same time without altering its value.

\sqrt{\frac{1}{(sinA+cosA)^{2} } } =\sqrt{\frac{1}{(sin^{2}A+2sinAcosA+cos^{2}A)  } }=\sqrt{\frac{1}{(sin^{2}A+cos^{2}A+2sinAcosA) } }

Now we can use the equality we found previously and the TRIGONOMETRIC IDENTITY to find our answer:

\sqrt{\frac{1}{(sin^{2}A+cos^{2}A+2sinAcosA) } }=\sqrt{\frac{1}{1+\frac{3}{4} } }= \sqrt{\frac{1}{(\frac{7}{4}) } }=\sqrt{\frac{4}{7} }=\frac{2}{\sqrt{7} }

Similar questions