if sin theta cos theta =1/2 then find the value of (sin theta + cos theta)
Answers
Answered by
3
Given
→ sin∅ cos∅ = ½
Solution
Since we know that,
- (a + b)² = a² + b² + 2ab
→ (sin∅ + cos∅)² = sin²∅ + cos²∅ + 2 sin∅ cos∅
→ (sin∅ + cos∅)² = 1 + 2(1/2)
→ (sin∅ + cos∅)² = 1 + 1
→ (sin∅ + cos∅)² = 2
→ sin∅ + cos∅ = √2
Answer: √2
Answered by
1
Answer:
√2
Step-by-step explanation:
Given :
sinθ.cosθ=1/2
multiplying by 2 on both sides
2sinθ.cosθ=1
sin2θ=1
∴ 2θ=sin⁻¹(1)
2θ=90°
θ=45°
∴sinθ+cosθ=sin45+cos45
=(1/√2) + (1/√2)
=2/√2
=√2
Similar questions