Math, asked by lisa4u7790, 1 year ago

If sin theta+cos theta=1, then find the value of sin 2theta+cos 2theta

Answers

Answered by SushmitaAhluwalia
6
  • The value of sin 2theta + cos 2theta is ±1.
Attachments:
Answered by arindamvutla
6

The value of \sin 2\theta+\cos 2\theta=\pm1

Step-by-step explanation:

Given:

\sin \theta+\cos \theta = 1

Squaring both the sides, we get

(\sin \theta+\cos \theta)^2 = 1^2\\\\\sin^2 \theta+\cos^2 \theta+2\sin \theta\cos \theta=1\\\\\textrm{We know,}\sin^2 \theta+\cos^2 \theta=1.So,\\\\1+2\sin \theta\cos \theta=1\\\\\textrm{We know,} 2\sin \theta\cos \theta=\sin2\theta\\\\1+\sin2\theta=1\\\\\sin2\theta=0

Now, using the identity \sin^2\theta+\cos^2\theta=1

\cos2\theta=\sqrt{1-\sin^22\theta}\\\\\cos2\theta=\sqrt{1-0}\\\\\cos2\theta=\pm1

Now, \sin 2\theta+\cos 2\theta=0+(\pm1)=\pm1

Therefore, \sin 2\theta+\cos 2\theta=\pm1

Similar questions