Math, asked by 9224676897, 3 months ago


If sin theta + cos theta = √2cos(90° - theta) , cot theta​

Answers

Answered by OoINTROVERToO
2

 \tt \:  \blue {GIVEN }\\ sin \theta + cos \theta = √2cos(90° - \theta)  \\  \\  \tt \blue{ \: TO \:  \:  FIND}  \\ \large \bf cot  \: \theta \\  \\   \tt \:  \blue{SOLUTION} \\  \bf \: sin  \: \theta + cos \: \theta = √2cos \: (90 - \theta ) \\  \\ \pmb{  \boxed  {cos(90° -\theta ) = sin\theta} }\\  \\   \bf \: sin  \: \theta + cos \:  \theta = √2sin  \: \theta \\  \bf \: cos \theta = √2sin \theta - sin \theta \\  \bf \: cos \theta = sin \theta (√2 - 1) \\  \bf \: cos  \: \theta / sin \:  \theta = √2 - 1 \\  \bf \: cot  \: \theta = √2 - 1  \\  \bf \:  cot \:  \theta = 1.41 - 1 \\  \bf \: cot  \: \theta \:  ≈  \: 0.41

Answered by BrainlyBAKA
0

Step-by-step explanation:

sinθ+cosθ=√2cos(90−θ)

cos(90°−θ)=sin theta

  • cos(90°−θ)=sinθ

sinθ+cosθ=√2sinθ

cosθ=√2sinθ−sinθ

cosθ=sinθ(√2−1)

cosθ/sinθ=√2−1

cotθ=√2−1

cotθ=1.41−1

cotθ≈0.41

Similar questions