Math, asked by kavyarajput792000, 1 year ago

If sin theta +cos theta =√3 then prove tan theta +cot theta = 1

Plzzzzzzz .

Answers

Answered by Anonymous
2

ANSWER:-

Given:

If sin theta + cos theta= √3

To prove:

tan theta + cot theta= 1.

Proof:

sin \theta \:  + cos \theta =  \sqrt{3}  \\ squaring \:both \: sides \: we \: get \\  =  > (sin \theta + cos \theta) {}^{2}  = ( { \sqrt{3} )}^{2}  \\  \\  =  >  {sin}^{2}  \theta + cos {}^{2}  \theta + 2sin \theta \: cos \theta = 3 \\  \\  =  > 2sin \theta \: cos \theta = 3 - 1 = 2 \:  \:  \:  \:  \: ( {sin}^{2}  \theta +  {cos}^{2}  \theta = 1) \\  \\  =  > sin \theta \: cos \theta = 1.............(1) \\  \\  =  > tan \theta + cot \theta \\  \\  =  >  \frac{sin \theta}{cos \theta}  +  \frac{cos \theta}{sin \theta}  \\  \\  =  >  \frac{ {sin}^{2} \theta +  {cos}^{2}   \theta}{cos \theta \: sin \theta}  =  \frac{1}{1}  \:  \:  \:  \:  \:  \: [using \: eq.(1)] \\  \\   =  > 1 \\  \\  =  > tan \theta + cot \theta = 1

Proved.

Hope it helps ☺️

Answered by mn121
2

Here's your answer...

Hope it helps you...

Attachments:
Similar questions