If sin theta + cos theta=√3, then prove that tan theta +cot theta=1
Answers
Question:
If sin@ + cos@ = √3 , then prove that
tan@ + cot@ = 1.
Note:
✓ tanA = sinA/cosA
✓ cotA = cosA/sinA
✓ (sinA)^2 + (cosA)^2 = 1
✓ sin(A+B) = sinA•cosB + cosA•sinB
✓ sin(A-B) = sinA•cosB - cosA•sinB
✓ cos(A+B) = cosA•cosB - sinA•sinB
✓ cos(A-B) = cosA•cosB + sinA•sinB
Given:
sin@ + cos@ = √3
To prove:
tan@ + cot@ = 1
Proof:
We have;
sin@ + cos@ = √3 --------(1)
Squaring both sides of eq-(1) ,
We have ;
=> (sin@ + cos@)^2 = (√3)^2
=> (sin@)^2+(cos@)^2+2•sin@•cos@=3
{ (sin@)^2 + (cos@)^2 = 1 }
=> 1 + 2•sin@•cos@ = 3
=> 2•sin@•cos@ = 3 - 1
=> 2•sin@•cos@ = 2
=> sin@•cos@ = 2/2
=> sin@•cos@ = 1 ----------(2)
Now,
We have LHS,
= tan@ + cot@
= sin@/cos@ + cos@/sin@
= { (sin@)^2 + (cos@)^2 }/cos@•sin@
{ (sin@)^2 + (cos@)^2 = 1 }
= 1/sin@•cos@ { using eq-(2) }
= 1/1
= 1
= RHS
Hence proved.