if sin theta +Cos theta = √3, then prove that tan theta + cot theta = 1
Answers
Answered by
42
sin theta + cos theta = √3
( sin theta + cos theta )^ 2 = (√3 ) ^2
sin^2 theta + cos^2 theta +2sin theta. cos theta = 3
1 + 2 sin theta . cos theta = 3
2 sin theta . cos theta = 2
sin theta . cos theta = 1
sin theta . cos theta = sin^2 theta + cos^2 theta
( 1 = sin^2 theta + cos^2 theta
sin theta . cos theta / sin theta . cos theta
= sin^2 theta + cos^2 theta / sin theta . cos theta
1 = tan theta + cot theta
( sin theta + cos theta )^ 2 = (√3 ) ^2
sin^2 theta + cos^2 theta +2sin theta. cos theta = 3
1 + 2 sin theta . cos theta = 3
2 sin theta . cos theta = 2
sin theta . cos theta = 1
sin theta . cos theta = sin^2 theta + cos^2 theta
( 1 = sin^2 theta + cos^2 theta
sin theta . cos theta / sin theta . cos theta
= sin^2 theta + cos^2 theta / sin theta . cos theta
1 = tan theta + cot theta
Answered by
44
hey mate here is ur answer
hope it is helpful for u
hope it is helpful for u
Attachments:
Similar questions