Math, asked by mythrichitturi4321, 2 months ago

if sin theta +cos theta = a, then sin^4 theta, then sin^4 + cos^4 theta = ?

Answers

Answered by suhail2070
0

Answer:

 { \sin( \alpha ) }^{4}  +  { \cos( \alpha ) }^{4} =   \frac{{(1 -  {a}^{2} )}^{2} }{2}

Step-by-step explanation:

 { \sin( \alpha ) }^{}  +  { \cos( \alpha ) }^{}  = a \\  \\ on \: squaring \: both \: the \: sides \\  \\   {( \sin( \alpha ) +  \cos( \alpha )  ) }^{2}  =  {a}^{2}  \\  \\  { \sin( \alpha ) }^{2}  +  { \cos( \alpha ) }^{2}  + 2 \sin( \alpha )  \cos( \alpha )  =  {a}^{2}  \\  \\  \\  \\ therefore \:  \:  \:  \:  \: 1 + 2 \sin( \alpha )  \cos( \alpha ) =  {a}^{2}    \\  \\ then \:  \:  \:  \:  \sin( \alpha )  \cos( \alpha ) =  \frac{ {a}^{2} - 1 }{2}  \\  \\  { \sin( \alpha ) }^{4}  +  { \cos( \alpha ) }^{4}  =  1 - 2 { \sin( \alpha ) }^{2}  { \cos( \alpha ) }^{2}  \\  \\  = 1 - 2 \frac{ {( {a}^{2}  - 1)}^{2} }{ {2}^{2} }  \\  \\  = 1 -   \frac{ {{( {a}^{2}  - 1) }^{2} }^{} }{2}  \\  \\  =  \frac{2 -  {a}^{4  } - 1 + 2 {a}^{2}  }{2}  \\  \\  =  \frac{ 1 -  {a}^{4}  + 2 {a}^{2} }{2}  \\  \\  =   \frac{{(1 -  {a}^{2} )}^{2} }{2}

Similar questions