If sin theta + cos theta equals to 1/2 then find the value of sin 2 theta
Answers
Answered by
2
Given : sin∅ + cos∅ = ½
→ sin²∅ + cos²∅ + 2·sin∅·cos∅ = ¼
→ 1 + 2·sin∅·cos∅ = ¼
→ 2·sin∅·cos∅ = - ¾
→ sin∅ × cos∅ = - ⅜
→ sin∅ = - 3/(8cos∅)
→ - 3/(8cos∅) + cos∅ = ½
→ (- 3 + 8cos²∅)/(8cos∅) = ½
→ 8cos²∅ - 4cos∅ - 3 = 0
- D = b² - 4ac
- D = 16 + 96 = 112
→ cos∅ = (4 ± √112)/16
→ cos∅ = (4 + 8√2)/16
→ cos∅ = (1 + 2√2)/4
→ sin∅ = ½ - (1 + 2√2)/4
→ sin∅ = (2 - 1 - 2√2)/4
→ sin∅ = (1 - 2√2)/4
→ sin2∅ = (1 - 2√2)/2
OR ½ - √2
Similar questions