Math, asked by pranjan0719, 4 months ago

if sin theta = cos theta find the value of 3tan ^2theta +2 sin^2theta+cos^2 theta​

Answers

Answered by Anonymous
126

 \large \sf \maltese \:  \:  \:  \underline{ \underline{Question \:  : }}

  • If sin theta = cos theta find the value of 3tan ^2theta +2 sin^2theta+cos^2 theta

 \large \sf \maltese \:  \:  \:  \underline{ \underline{Solution\:  : }}

  • From the given sin theta = cos theta ; => tan theta = 1

 \bull \:   \:  \bf \: 3  \: {\tan}^{2}  + 2  \: { \sin}^{2}  \theta +  { \cos}^{2}  \theta \\  \\  \\  : \implies \sf  3 + { \sin}^{2}  \theta \:  \:  \:  \:   \:  \: \bigg[  \bf\because  \:  \:  { \sin}^{2} \theta +  { \cos}^{2} \theta = 1  \bigg ] \\  \\  \\ : \implies \sf 3 + 1 -  { \cos}^{2}  \theta \\  \\  \\ : \implies \sf 4 -  \frac{1}{{ \sec}^{2}  \theta}  \\  \\  \\ : \implies \sf 4 -  \frac{1}{1 +  { \tan}^{2} \theta }  \:  \:  \:  \:  \bigg[  \bf \because \:  \:  \:  { \sec}^{2}  \theta -  { \tan}^{2}  \theta = 1] \\  \\  \\ : \implies \sf \: 4 -  \frac{1}{1 + 1}  \: \:  \:   \:  \:  \bigg[  \because \:  \bf \:  \:  \tan \theta = 1 \bigg] \\  \\  \\ \: \large   \:  \: \therefore   \:  \:  \:  { \underline{\boxed{\bf  \:  \frac{7}{2}  \: }  \:  \:   }}_{\bigstar \star}

Similar questions