Math, asked by bhuvanavengala25, 10 months ago

if sin theta + cos theta is equal to 3 then find tan theta + cot theta​

Answers

Answered by virance87
0

Step-by-step explanation:

 \sin( \alpha )  +  \cos( \alpha )  = 3 \\    \sin(a)  = 3 -  \cos(a)  \\   \cos(a)  = 3 -  \sin(a) \\ \\   \tan(a)  =  \frac{ \sin(a) }{ \cos(a) }  \\  \\  \tan(a)  =  \frac{3 -  3 +   \sin(a) )  }{3 -  \sin(a) }  \\  \\  \tan(a)  =  \frac{  \sin(a)  }{3 -  \sin(a) }  \\  \\   \cot(a)   =  \frac{1}{ \tan(a) } \\  \\  \cot(a)  =  \frac{3 -  \sin(a) }{ \sin(a) }  \\  \\  \\  \\  \tan(a)  +  \cot(a)  =  \frac{ \sin(a) }{3 -  \sin(a) }  +  \frac{3 -  \sin(a) }{ \sin(a) }  \\  \\  =  \frac{ { \sin(a) }^{2} + (3 -  \sin(a))  }{3 \sin(a) -  { \sin(a) }^{2}  }  \\  \\  =  \frac{ \sin(a) }{ \sin(a) }  \frac{ \sin(a) + 3 - 1 }{3 -  \sin(a) }  \\  \\  =  \frac{ \sin(a) + 2 }{3 -   \sin(a)  }

Answered by Anonymous
16

\Large\frak{\underline{\underline{Answer:}}}

 \sin( \alpha )  +  \cos( \alpha )  = 3 \\    \sin(a)  = 3 -  \cos(a)  \\   \cos(a)  = 3 -  \sin(a) \\ \\   \tan(a)  =  \frac{ \sin(a) }{ \cos(a) }  \\  \\  \tan(a)  =  \frac{3 -  3 +   \sin(a) )  }{3 -  \sin(a) }  \\  \\  \tan(a)  =  \frac{  \sin(a)  }{3 -  \sin(a) }  \\  \\   \cot(a)   =  \frac{1}{ \tan(a) } \\  \\  \cot(a)  =  \frac{3 -  \sin(a) }{ \sin(a) }  \\  \\  \\  \\  \tan(a)  +  \cot(a)  =  \frac{ \sin(a) }{3 -  \sin(a) }  +  \frac{3 -  \sin(a) }{ \sin(a) }  \\  \\  =  \frac{ { \sin(a) }^{2} + (3 -  \sin(a))  }{3 \sin(a) -  { \sin(a) }^{2}  }  \\  \\  =  \frac{ \sin(a) }{ \sin(a) }  \frac{ \sin(a) + 3 - 1 }{3 -  \sin(a) }  \\  \\  =  \frac{ \sin(a) + 2 }{3 -   \sin(a)  }

Similar questions