Math, asked by Umkenandkishor6802, 1 year ago

If sin theta + cos theta is equal to p and sec theta + cosec theta is equal to q then prove that q into p square minus 1 is equal to p

Answers

Answered by Anonymous
6

\huge{\underline{\underline{\blue{\mathfrak{Answer :}}}}}

\huge{\underline{\textbf{Given \: :}}}

P = Sinθ + Cosθ

Q = Secθ + Cosecθ

____________________

\huge{\underline{\bf{To \: Prove \: :}}}

Q(P² - 1) = 2P

____________________

\huge{\underline{\bf{Proof\: :}}}

Q(P² - 1) = 2P ......... (1)

Put Value of P and Q in equation 1.

 \sf{(sec \:  \theta \:  + \: cosec \:  \theta) (sin \:\theta \:  +  {cos \: \theta)}^{2}  - 1 } \\  \\   \large{\bf{Using \: identity}} \\  \\\large{\boxed{\boxed{\purple{\mathfrak{(a \:  +  \: b {)}^{2} =  {a}^{2} +  {b}^{2}   + 2ab }}}}} \\  \\  \sf{( \frac{1}{cos \: \theta} } +  \frac{1}{sin \:\theta } )( {sin}^{2} \theta \:  +  \:  {cos}^{2} \theta \:  + 2sin \: \theta \: cos \: \theta - 1) \\  \\   \large{\bf{Using \: idenity: }} \\  \\  \large{\boxed{\boxed{\red{\mathfrak{ {sin}^{2}\theta \:  +  {cos}^{2} \theta = 1 }}}}} \\  \\  \sf{ (\frac{sin \: \theta \: +  \: cos \theta}{sin\theta \: cos\theta} })( \cancel1 -  \cancel1 + 2sin \: \theta \: cos \: \theta) \\  \\  \sf{(\frac{sin \: \theta \: +  \: cos \theta}{ \cancel{sin\theta \: cos\theta}})( \cancel{2sin \: \theta \: cos \: \theta)}} \\  \\  \sf{2(sin \:\theta \:  + cos \: \theta )} \\  \\  \sf{2P}

\huge{\boxed{\boxed{\pink{\mathcal{ Hence\: Proved}}}}}

Answered by EliteSoul
7

Answer:

★ Refer to attachment for solution.★

Hope it helps you ♥ ♥

Attachments:
Similar questions