Math, asked by sumitsanoria012, 11 months ago

if sin theta + cos theta is equal to under root cos theta if sin theta + cos theta is equal to under root 2 cos theta theta is not 90 degree then the value of tan theta is under root 2 -1

 \sin(?)  +  \cos(?)  =  \sqrt{2}  \cos(?)

Answers

Answered by warrior24
1

Step-by-step explanation:

  1. sin theta + cos theta = √2cos theta_____(1)

sin theta + cos theta/ cos theta= √2 cos theta/ cos theta

sin theta/ cos theta +1 = √2

tan theta +1 = √2

or

tan theta = √2-1

Answered by Anonymous
161

Correct Question :

if \sin( \theta) + \cos( \theta)=\sqrt{2} \cos( \theta) and, [(\theta) \ne0]. Then show that \tan(\theta)= \sqrt{2} - 1

AnswEr :

\longrightarrow\sin( \theta)  +  \cos( \theta) = \sqrt{2} \cos( \theta)

\longrightarrow(\sin( \theta)  +  \cos( \theta))^{2} = (\sqrt{2} \cos( \theta))^{2}

\longrightarrow\sin^{2} ( \theta)  +  \cos^{2} ( \theta) + 2 \sin(\theta) \cos(\theta) =  2\cos^{2} ( \theta)

\longrightarrow(\sin^{2} ( \theta)  +  \cos^{2} ( \theta))+ 2 \sin(\theta) \cos(\theta) =  2\cos^{2} ( \theta)

\longrightarrow1+ 2 \sin(\theta) \cos(\theta) =  2\cos^{2} ( \theta)

\longrightarrow2 \sin(\theta) \cos(\theta) =  2\cos^{2} ( \theta) - 1

 \longrightarrow \sin2(\theta) =  \cos2( \theta)

\longrightarrow \dfrac{\sin2(\theta)}{\cos2( \theta)} = 1

\longrightarrow \tan2( \theta) = 1

\longrightarrow \dfrac{2 \tan( \theta) }{1 -  \tan^{2} (\theta)}  = 1

\longrightarrow 2 \tan( \theta)  = 1 -  \tan^{2} (\theta)

\longrightarrow \tan^{2} (\theta) + 2 \tan( \theta) - 1 = 0

\longrightarrow\sf\tan(\theta) =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

\longrightarrow\sf\tan(\theta) =  \dfrac{ - 2 \pm \sqrt{ {(2)}^{2}  - 4 \times 1\times - 1} }{2 \times 1}

\longrightarrow\sf\tan(\theta) =  \dfrac{ - 2 \pm \sqrt{4  + 4}}{2}

\longrightarrow\sf\tan(\theta) =  \dfrac{ - 2 \pm \sqrt{8}}{2}

\longrightarrow\sf\tan(\theta) =  \dfrac{ - 2 \pm 2\sqrt{2}}{2}

\longrightarrow\sf\tan(\theta) =  \dfrac{ \cancel2( - 1 \pm \sqrt{2})}{\cancel2}

\longrightarrow\sf\tan(\theta) =  - 1 \pm \sqrt{2}

\longrightarrow \boxed{\sf\tan(\theta) = \sqrt{2} - 1}

\boxed{\begin{minipage}{7 cm}\underline{\text{Trigonometric Identities Used Here}}\\ \\ \sin^2\theta + \cos^2\theta=1\\ \\2\sin\theta\cos\theta=\sin2\theta\\ \\2cos^2\theta - 1=\cos2\theta\\ \\ \tan2\theta=\dfrac{2\tan\theta}{1 - \tan^2\theta}\end{minipage}}

Similar questions