if sin theta + cos theta is equals to root 3 then prove that 10 theta + cot theta is equal to 1
Answers
Correct Question
If sin∅ + cos∅ = √3,then find prove that tan∅ + cot∅ = 1
Solution
Given that,
sin∅ + cos∅ = √3................[1]
To prove : tan∅ + cot∅ = 1
Squaring equation [1] on both sides,we get :
(sin∅ + cos∅)² = 3
→ sin²∅ + cos²∅ + 2sin∅cos∅ = 3
Since, sin²∅ + cos²∅ = 1
→2sin∅cos∅ = 2
→ sin∅cos∅ = 1..............[2]
Consider tan∅ + cot∅,
→ sin∅/cos∅ + cos∅/sin∅
→ (sin²∅ + cos²∅)/sin∅cos∅
→ 1/sin∅cos∅
→ 1 → RHS
Hence,Proved
Answer:
Step-by-step explanation:
Given :-
sin θ + cos θ = √3
To Prove :-
squaring on both sides,
Solution :-
sin θ + cos θ = √3
Squaring both sides, we get
⇒ (sin θ + cos θ)2 = 3
⇒ sin2 θ + cos2 θ + 2sin θ. cos θ = 3
⇒ 1 + 2sin θ. cos θ = 3 ………( sin2 θ + cos2 θ = 1)
⇒ 2sin θ. cos θ = 2
⇒ sin θ. cos θ = 1 ………(1)
⇒ L.H.S. = tan θ + cot θ
= Sin θ/cos θ + cos θ/sin θ
= Sin² θ + Cos² θ/Sin θ × Cos θ
= 1/1 [From Eq (i)]
R.H.S = 1
L.H.S = R.H.S
Hence Proved