Math, asked by abhayop39, 1 month ago

If sin theta + cos theta = m and sec theta + cosec theta = n , prove that n(m² – 1) = 2m.

✏️❤️✏️​

Answers

Answered by pandaXop
205

LHS = RHS

Step-by-step explanation:

Given:

  • sinθ + cosθ is equal to m.
  • secθ + cosecθ is equal to n.

To Prove:

  • n(m² – 1) = 2m

Proof: Putting all the values in LHS.

➟ n(m² – 1)

➟ (secθ + cosecθ) [(sinθ + cosθ)² – 1]

➟ (1/cosθ + 1/sinθ) [(sin²θ + cos²θ + 2sinθcosθ) – 1]

➟ (sinθ + cosθ/sinθcosθ) [1 + 2sinθcosθ – 1]

➟ (sinθ + cosθ/sinθcosθ) × 2sinθcosθ

➟ 2 × sinθ + cosθ

➟ 2 × m

➟ 2m

Hence, LHS = RHS

★ Formulae used

  • secθ = 1/cosθ

  • sinθ = 1/cosecθ

  • cosecθ = 1/sinθ

  • sin²θ + cos²θ = 1
Answered by BrainlyRish
128

Given : sin θ + cos θ = m , and sec θ + cosec θ= n .

Exigency To Prove : n(m² – 1) = 2m . [ L.H.S = R.H.S ]

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀Given that ,

⠀⠀⠀⠀⠀⠀▪︎⠀\sf \: sin \:\theta \: + \: \: cos \:\theta \: =\: m \:\\

⠀⠀⠀⠀⠀⠀▪︎⠀\sf \: sec \:\theta \: + \: \: cosec \:\theta \: =\: n \:\\

⠀⠀⠀Need To Proove :

⠀⠀⠀⠀⠀⠀▪︎⠀\bf{ \: n \:\bigg( \: m^2\: - \:1 \:\bigg) \: =\: 2m \: } \:\\

⠀⠀Here ,

⠀⠀⠀⠀⠀⠀\leadsto \: \bf L.H.S \:\:\sf =\: \: n \:\bigg( \: m^2\: - \:1 \:\bigg) \:\\

⠀⠀⠀⠀⠀⠀\leadsto \: \bf R.H.S \:\:\sf =\: \: 2m \:\\

\qquad \bigstar \underline {\boldsymbol {Now \: by \:taking \: the \: \:L.H.S \:\: :}}\\

⠀⠀⠀⠀⠀⠀\leadsto \: \bf L.H.S \:\:\sf =\: \: n \:\bigg( \: m^2\: - \:1 \:\bigg) \:\\\\

\qquad \dashrightarrow \:\sf \: \: n \:\bigg( \: m^2\: - \:1 \:\bigg) \:\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: given \: Values \::}}\\

\qquad \dashrightarrow \:\sf \: \: n \:\bigg( \: m^2\: - \:1 \:\bigg) \:\\

⠀⠀⠀▪︎⠀\sf \: sin \:\theta \: + \: \: cos \:\theta \: =\: m \:\\

⠀⠀⠀▪︎⠀\sf \: sec \:\theta \: + \: \: cosec \:\theta \: =\: n \:\\

\qquad \dashrightarrow \:\sf \: \: n \:\bigg( \: m^2\: - \:1 \:\bigg) \:\\

\qquad \dashrightarrow \:\sf \: \bigg(\:sec \:\theta \: + \: \: cosec \:\theta \: \bigg) \:  \:\bigg[  \: \bigg(\:sin \:\theta \: + \: \: cos \:\theta \: \bigg)^2\: - \:1 \:\bigg] \:\\\\

\qquad \because\:\:\bigg\lgroup \sf{ \red{ sec \: \theta \: =\:\dfrac{1}{\:cos \:\theta }}}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀AND ,

\qquad \because\:\:\bigg\lgroup \sf{ \red{ cosec \: \theta \: =\:\dfrac{1}{\:sin \:\theta }}}\bigg\rgroup \\\\

\qquad \dashrightarrow \:\sf \: \bigg(\:sec \:\theta \: + \: \: cosec \:\theta \: \bigg) \:  \:\bigg[  \: \bigg(\:sin \:\theta \: + \: \: cos \:\theta \: \bigg)^2\: - \:1 \:\bigg] \:\\\\

\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{1}{cos \:\theta } \: + \: \: \dfrac{1}{cos \:\theta} \: \bigg) \:  \:\bigg[  \: \bigg(\:sin \:\theta \: + \: \: cos \:\theta \: \bigg)^2\: - \:1 \:\bigg] \:\\\\

\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \:  }{cos \:\theta\:\sin \:\theta } \:  \: \bigg) \:  \:\bigg[  \: \bigg(\:sin \:\theta \: + \: \: cos \:\theta \: \bigg)^2\: - \:1 \:\bigg] \:\\\\

\qquad \because\:\:\bigg\lgroup \sf{ \red{ ( \: a +\:b)^2\:\:=\:a^2 + b^2 + 2ab }}\bigg\rgroup \\\\

\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \:  }{cos \:\theta\:\sin \:\theta } \:  \: \bigg) \:  \:\bigg[  \: \:sin^2 \:\theta \: + \: \: cos^2 \:\theta \:+\: 2cos \:\theta\:\sin \:\theta \: - \:1 \:\bigg] \:\\\\

\qquad \because\:\:\bigg\lgroup \sf{ \red{ sin^2 \: \theta \: +\:\:cos^2 \:\theta\:\:=\:1 }}\bigg\rgroup \\\\

\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \:  }{cos \:\theta\:\sin \:\theta } \:  \: \bigg) \:  \:\bigg[  \: \:sin^2 \:\theta \: + \: \: cos^2 \:\theta \:+\: 2cos \:\theta\:\sin \:\theta \: - \:1 \:\bigg] \:\\\\

\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \:  }{cos \:\theta\:\sin \:\theta } \:  \: \bigg) \:  \:\bigg[  \: \:1 \:+\: 2cos \:\theta\:\sin \:\theta \: - \:1 \:\bigg] \:\\\\

\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \:  }{cos \:\theta\:\sin \:\theta } \:  \: \bigg) \:  \:\bigg[  \: \cancel {\:1 }\:+\: 2cos \:\theta\:\sin \:\theta \:\cancel {- \:1 }\:\bigg] \:\\\\

\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \:  }{cos \:\theta\:\sin \:\theta } \:  \: \bigg) \:  \:\bigg[  \: \:\: 2\:cos \:\theta\:\sin \:\theta \:  \:\bigg] \:\\\\

\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \:  }{\cancel{ cos \:\theta\:\sin \:\theta} } \:  \: \bigg) \:  \:\bigg[  \: \:\: 2\:\cancel {\:\:cos \:\theta\:\sin \:\theta \: } \:\bigg] \:\\\\\qquad \dashrightarrow \:\sf \: \bigg( sin \:\theta \: + \: \: cos \:\theta \:   \bigg) \:  \:\bigg( \: \:\: 2\:  \:  \:\bigg) \:\\\\\qquad \dashrightarrow \:\sf \:2 \times  \bigg( sin \:\theta \: + \: \: cos \:\theta \:   \bigg) \:  \: \:\\\\

⠀⠀⠀▪︎⠀\sf \: sin \:\theta \: + \: \: cos \:\theta \: =\: m \:\\\\

\qquad \dashrightarrow \:\sf \:2 \times  \bigg( sin \:\theta \: + \: \: cos \:\theta \:   \bigg) \:  \: \:\\\\\qquad \dashrightarrow \:\sf \:2 \times  \bigg( m\:   \bigg) \:  \: \:\\\\\qquad \dashrightarrow \:\sf \:2 \times m\:  \: \:\\\\\qquad \dashrightarrow \:\sf \:2m\:  \: \:\\\\\qquad \therefore \:\:\pmb{\underline{\purple{\frak{\:L.H.S \:\:=\:\: 2m \: }}} }\:\:\bigstar \\

⠀⠀⠀⠀⠀\leadsto \: \bf L.H.S \:\:\sf =\: \: 2m \:\\

⠀⠀⠀⠀⠀\leadsto \: \bf R.H.S \:\:\sf =\: \: 2m \:\\

⠀⠀As , We can see that here , [ L.H.S = R.H.S ]

\therefore {\underline {\bf{ Hence, \:Proved\:}}}\\\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions