Math, asked by riya770, 11 months ago

If sin theta + cos theta = m and sec theta + cosec theta = n, show that n(m^2 - 1) = 2m

Answers

Answered by jayantikhurana18
1

Step-by-step explanation:

hope this will help you

Attachments:
Answered by Anonymous
24

AnswEr :

\normalsize\:\bullet\:\sf\ sec\theta + cosec\theta = n

\underline{\bigstar\:\textsf{According \: to \: the \: question \: now:}}

\scriptsize\tt{\qquad\dag\       cosec\theta = \frac{1}{sin\theta}}

\scriptsize\tt{\qquad\dag\ sec\theta = \frac{1}{cos\theta}}

Taking left hand side :

\normalsize\ : \implies\sf\ n(m^2  - 1)

\normalsize\ : \implies\sf\ \left(\frac{1}{cos\theta} + \frac{1}{sin\theta} \right) \left[(sin\theta + cos\theta)^{2} - 1) \right]

\normalsize\ : \implies\sf\ \left(\frac{sin\theta + cos\theta}{cos\theta sin\theta} \right) \left[sin^{2}\theta + cos^{2}\theta + 2sin\theta cos\theta -  1 \right]

\scriptsize\tt{\qquad\dag\ sin^2\theta + cos^2\theta = 1 }

\normalsize\ : \implies\sf\ \left(\frac{sin\theta + cos\theta}{cos\theta sin\theta} \right) \left[\cancel{1} + 2sin\theta cos\theta - \cancel{1} \right]

\normalsize\ : \implies\sf\ \left(\frac{sin\theta + cos\theta}{\cancel{cos\theta sin\theta}} \right) \left[2 \cancel{sin\theta cos\theta}  \right]

\normalsize\ : \implies\sf\ 2(sin\theta + cos\theta) \quad\ ---(eq.1)

Taking right hand side :

\normalsize\ : \implies\sf\ 2m

\normalsize\ : \implies\sf\ 2(sin\theta + cos\theta) \quad\ ---(eq.2)

\underline{\bigstar\:\textsf{from \: equation \: 1 \: and \: 2}}

\normalsize\ : \implies\sf\ 2(sin\theta + cos\theta) = 2(sin\theta + cos\theta)

\normalsize\ : \implies\sf\ L.H.S = R.H.S

 \rule{170}1

\boxed{\begin{minipage}{6cm} Important  Trigonometric identities :- \\ \\ $\: \: 1)\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\cos^2\theta=1-\sin^2\theta \\ \\ 4)1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5) \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\sec^2\theta=1+\tan^2\theta \\ \\ 8)\sec^2\theta-\tan^2\thetha=1 \\ \\ 9)\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions