Math, asked by riya770, 11 months ago

If sin theta + cos theta = m and sec theta + cosec theta = n, show that n(m^2 - 1) = 2m

Answers

Answered by Aasthanagpal
1

Answer:

Hope it helps ....

sorry for my bad handwriting

Attachments:
Answered by Anonymous
1

\Large{\textbf{\underline{\underline{According\;to\;the\;Questions}}}}

Given,

sinθ + cosθ = m

secθ + cosecθ = n

\Large{\boxed{\sf\:{Squaring\;Both\;Sides}}}

(sinθ + cosθ)² = m²

sin²θ + cos²θ + 2sinθcosθ = m²

2sinθcosθ = m² - 1 ............ (1)

And,

secθ + cosecθ = n

\rm \: \: \: \: \: \: \: \: \:=\dfrac{1}{cos\theta}+\dfrac{1}{sin\theta}=n

\rm \: \: \: \: \: \: \: \: \:=\dfrac{sin\theta +cos\theta}{sin\theta cos\theta}=n

\rm \: \: \: \: \: \: \: \: \:=\dfrac{m}{sin\theta cos\theta}=n

\rm \: \: \: \: \: \: \: \: \: sin\theta cos\theta=\dfrac{m}{n}..... (2)

From (1) and (2)

\rm \: \: \: \: \: \: \: \: \: 2\times\dfrac{m}{n}=m^2 -1

2m = n(m² - 1)

Similar questions