Math, asked by lizliathomas0407, 11 months ago

If sin theta+ cos theta = p and sec theta + cosec theta = 9, show that q (p^2- 1) = 2p.​

Answers

Answered by amannishad0512p5zxh6
1

Go through the pic.

mark me brainlest and not forget to follow me.

and next time pps pls write question properly it is q in place of 9 .

Attachments:
Answered by Anonymous
7

\bf{\Large{\underline{\sf{Correct\:Question\::}}}}}}

If sinФ + cosФ = p & secФ + cosecФ = q, show that q(p² - 1) = 2p.

\bf{\Huge{\boxed{\sf{\green{ANSWER\::}}}}}}}

\bf{\Large{\underline{\bf{Given\;:}}}}}

If sinФ + cosФ = p & secФ + cosecФ = q.

\bf{\Large{\underline{\bf{To\:find\::}}}}

Show that q(p² - 1) = 2p.

\bf{\Large{\underline{\sf{\blue{Explanation\::}}}}}

\longmapsto\sf{sin\theta+cos\theta=p....................(1)}

\longmapsto\sf{sec\theta+cosec\theta=q.......................(2)}

From equation (2), we get;

\leadsto\sf{sec\theta+cosec\theta=q}

\leadsto\sf{\frac{1}{cos\theta} +\frac{1}{sin\theta} =q}

\leadsto\sf{\frac{sin\theta+cos\theta}{cos\theta\:sin\theta} =q}

\leadsto\sf{\frac{p}{cos\theta\:sin\theta} =q}\:\:\:\:\:\:\:\:\:\:\:[from\:equation\:(1)]

\leadsto\sf{\frac{p}{q} =cos\theta\:sin\theta................(3)}

from equation (1), we get;

\leadsto\sf{sin\theta+cos\theta=p}

Squaring both the sides, on

\leadsto\sf{(sin\theta+cos\theta)^{2} =(p)^{2} }

\leadsto\sf{sin^{2}\theta +cos^{2}\theta +2sin\theta\:cos\theta=p^{2} \:\:\:\:\:\:\:\:[(a+b)^{2}=a^{2}+b^{2} +2ab  ]}

\leadsto\sf{1+2\frac{p}{q} =p^{2} \:\:\:\:\:\:\:\:[sin^{2} \theta+cos^{2} \theta=1]}

\leadsto\sf{\frac{2p}{q} =p^{2} -1}

\leadsto\sf{\red{2p=q(p^{2} -1)}}

Thus,

Proved.

Similar questions