Math, asked by donatreesa, 11 months ago

if sin theta + cos theta =root 3, then prove that tan theta + cot theta =1​

Answers

Answered by Anonymous
1

Step-by-step explanation:

Given

 \sin( \alpha )  +  \cos( \alpha )  =  \sqrt{3}

Squarring and adding, we get

 =  >  {( \sin \alpha +  \cos \alpha  ) }^{2}  =  {( \sqrt{3})} ^{2}  \\  \\  =  >  { \sin }^{2}   \alpha   +  { \cos}^{2}  \alpha  + 2 \sin( \alpha )  \cos( \alpha )  = 3 \\  \\  =  > 1 + 2 \sin( \alpha )  \cos( \alpha )  = 3 \\  \\  =  > 2 \sin( \alpha )  \cos( \alpha )  = 3 - 1 \\  \\  =  >  \sin( \alpha  )  \cos( \alpha  )  =  \frac{2}{2}  \\  \\  =  >  \sin( \alpha )  \cos( \alpha )  = 1

Now, to find the value of

 \tan( \alpha )  +  \cot( \alpha )

Solving further, we get

 =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  +  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  \\  \\  =  \frac{ { \sin }^{2}  \alpha  +  { \cos}^{2}  \alpha }{ \sin( \alpha )  \cos( \alpha ) }  \\  \\  =  \frac{1}{ \sin( \alpha ) \cos( \alpha )  }  \\  \\  =  \frac{1}{1}  \\  \\  = 1

Hence, Proved

Similar questions