If sin theta + cos theta = root2 then evaluate tan theta + cot theta
Answers
Answered by
1
sin+cos=√2
tan +cot
sin θ + cos θ = √2
(sin θ + cos θ)2 = (√2)2
sin2θ + cos2θ + 2 sin θ cos θ = 2
1 + 2 sin θ cos θ = 2
sin θ cos θ = 1/2 ... (i)
We know that, sin2θ + cos2θ = 1 ... (ii)
Dividing (ii) by (i) we get
tan θ + cot θ = 2
tan +cot
sin θ + cos θ = √2
(sin θ + cos θ)2 = (√2)2
sin2θ + cos2θ + 2 sin θ cos θ = 2
1 + 2 sin θ cos θ = 2
sin θ cos θ = 1/2 ... (i)
We know that, sin2θ + cos2θ = 1 ... (ii)
Dividing (ii) by (i) we get
tan θ + cot θ = 2
Answered by
0
sin theta + cos theta = root 2
=> sin square theta + cos square theta + 2 sin theta cos theta = 2
=> 1+ 2 sin theta cos theta = 2
sin theta cos theta = 1/2
now ,
tan theta + cot theta
= sin theta/ (cos theta) + cos theta/ (sin theta)
= (sin square theta + cos square theta)/( sin theta cos theta)
= 1/(1/2)
= 2
=> sin square theta + cos square theta + 2 sin theta cos theta = 2
=> 1+ 2 sin theta cos theta = 2
sin theta cos theta = 1/2
now ,
tan theta + cot theta
= sin theta/ (cos theta) + cos theta/ (sin theta)
= (sin square theta + cos square theta)/( sin theta cos theta)
= 1/(1/2)
= 2
Similar questions