If sin theta = cos theta , then find the value of
2tan theta + cos² theta
Answers
Answered by
13
sinФ = cosФ
We know :
cosФ = sin(90° - Ф)
sinФ = cosФ
⇒ sinФ = sin(90° - Ф)
Dividing both sides by Sin
⇒ Ф = 90° - Ф
⇒ Ф + Ф = 90° - Ф + Ф
⇒ 2Ф = 90°
⇒ Ф = 90°/2
⇒ Ф = 45°
2tanФ + cos²Ф
= 2 × tan45° + cos²45°
= 2 × 1 + (1/√2)²
= 2 + (1/2)
= 4/2 + 1/2
= 5/2
Answered by
72
Answer:
Ello
cosФ = sin(90° - Ф)
sinФ = cosФ
⇒ sinФ = sin(90° - Ф)
Dividing both sides by Sin
------------------------------------------------------------------
⇒ Ф = 90° - Ф
⇒ Ф + Ф = 90° - Ф + Ф
⇒ 2Ф = 90°
⇒ Ф = 90°/2
⇒ Ф = 45°
2 tanФ + cos²Ф
= 2 × tan 45 ° + cos²45°
= 2 × 1 + (1/√2)²
= 2 + (1/2)
add them :-
--------------------------------------------------------
= 4/2 + 1/2
= 5/2
therefore the answer is 5/2
Step-by-step explanation:
i hope it helps :)
mark me as brainliest plz
Similar questions