Math, asked by Anonymous, 1 year ago

If sin theta = cos theta , then find the value of
2tan theta + cos² theta​

Answers

Answered by Anonymous
13

sinФ = cosФ

We know :

cosФ = sin(90° - Ф)

sinФ = cosФ

⇒ sinФ = sin(90° - Ф)

Dividing both sides by Sin

⇒ Ф = 90° - Ф

⇒ Ф + Ф = 90° - Ф + Ф

⇒ 2Ф = 90°

⇒ Ф = 90°/2

⇒ Ф = 45°

2tanФ + cos²Ф

= 2 × tan45° + cos²45°

= 2 × 1 + (1/√2)²

= 2 + (1/2)

= 4/2 + 1/2

= 5/2

Answered by itzyashica01
72

Answer:

\huge\boxed{\mathfrak\blue{answer☆}}

Ello

cosФ = sin(90° - Ф)

sinФ = cosФ

⇒ sinФ = sin(90° - Ф)

Dividing both sides by Sin

------------------------------------------------------------------

⇒ Ф = 90° - Ф

⇒ Ф + Ф = 90° - Ф + Ф

⇒ 2Ф = 90°

⇒ Ф = 90°/2

⇒ Ф = 45°

2 tanФ + cos²Ф

= 2 × tan 45 ° + cos²45°

= 2 × 1 + (1/√2)²

= 2 + (1/2)

add them :-

--------------------------------------------------------

= 4/2 + 1/2

= 5/2

therefore the answer is 5/2

Step-by-step explanation:

i hope it helps :)

mark me as brainliest plz

Similar questions