Math, asked by kkajal851098, 4 months ago

If sin theta -cos theta = ½ then find the value of sin O+ sin O​

Answers

Answered by mathdude500
0

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\rm \: {sin\theta \:  \:  -  \: cos\theta \:  = \dfrac{1}{2} } \\ \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{sin\theta \:  +  \: cos\theta \: }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

1.  \: \boxed{ \pink{ \rm \:  {sin}^{2}\theta \:  +  {cos}^{2}  \theta \:  = 1}}

2.  \: \boxed{ \pink{ \rm \:  {(x + y)}^{2} +  {(x - y)}^{2}  = 2( {x}^{2}   +  {y}^{2} )}}

\large\underline\purple{\bold{Solution :-  }}

We know,

 \rm \:  {(x + y)}^{2}  +  {(x - y)}^{2}  =  2({x}^{2}  +  {y}^{2} )

 \bf \: on \: substituting \: x \:  = sin\theta \:  \: and \: y \:  = cos\theta \:  \: we \: get

 \rm \:  {(sin\theta \:  + cos\theta \: )}^{2}  +  {(sin\theta \:  - cos\theta \: )}^{2}  = 2( {sin}^{2} \theta \:  +  {cos}^{2} \theta \: )

\rm :  \implies \:  {(sin\theta \:  + cos\theta \:)}^{2}  +  {(\dfrac{1}{2}) }^{2}  = 2 \times 1

\rm :  \implies \:  {(sin\theta \:  + cos\theta \: )}^{2}  + \dfrac{1}{4}  = 2

\rm :  \implies \:  {(sin\theta \:  + cos\theta \: )}^{2} = 2 - \dfrac{1}{4}

\rm :  \implies \:  {(sin\theta \:  + cos\theta \: )}^{2} = \dfrac{8 - 1}{4}

\rm :  \implies \:  {(sin\theta \:  + cos\theta \: )}^{2} = \dfrac{7}{4}

\rm :  \implies \:  {(sin\theta \:  + cos\theta \: )}^{2} =  \pm \: \dfrac{ \sqrt{7} }{2}

\large \red{\bf \:  ⟼ Explore  \:  \: more } 

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions