Math, asked by amanh787, 11 months ago

if sin theta + cos theta= x, then show that tan theta + cot theta = 2/x^2-1

Answers

Answered by Kapiltheflash
7

Answer is in the above attachment

Hope u like it

Please like and mark Brainliest

Attachments:
Answered by harendrachoubay
10

\tan \theta+\cot \theta =\dfrac{2}{x^2-1}, shown.

Step-by-step explanation:

We have,

\sin \theta +\cos \theta= x

Show that \tan \theta+\cot \theta =\dfrac{2}{x^2-1}.

\sin \theta +\cos \theta= x

Squaring both sides, we get

(\sin \theta +\cos \theta)^2= x^2

\sin^2 \theta +\cos^2 \theta+2\sin \theta \cos \theta= x^2

1+2\sin \theta \cos \theta= x^2

Using the trigonometric identity,

\sin^2 A +\cos^2 A=1

\sin \theta \cos \theta= \dfrac{x^2-1}{2}                     ........... (1)

L.H.S. =\tan \theta+\cot \theta

=\dfrac{\sin \theta}{\cos \theta} +\dfrac{\cos \theta}{\sin \theta}

=\dfrac{\sin^2 \theta+\cos^2 \theta}{\sin \theta\cos \theta}

=\dfrac{1}{\sin \theta\cos \theta}

Using equation (1), we get

=\dfrac{1}{\dfrac{x^2-1}{2}}

=\dfrac{2}{x^2-1}

= L.H.S., shown.

Similar questions