Math, asked by goledishreya1756, 2 months ago

if sin theta + cos theta=X then sin theta - cos theta =?​

Answers

Answered by sandy1816
1

  \: sin \theta + cos \theta = x \\  ( {sin \theta + cos \theta})^{2}  =  {x}^{2}  \\  1 + 2sin \theta  cos \theta =  {x}^{2}  \\  sin \theta cos \theta =  \frac{ {x}^{2}  - 1}{2}  \\  \\   \: now \:  \:  \:   \: sin \theta - cos \theta =   \sqrt{( {sin \theta + cos \theta)}^{2}  - 4sin \theta cos \theta}  \\  =   \sqrt{ {x}^{2}  - 4( \frac{ {x }^{2}  - 1}{2}) }  \\  =  \sqrt{ {x}^{2}  - 2 {x}^{2}  + 2}  \\  =   \: \sqrt{2 -  {x}^{2} }

Similar questions