Math, asked by Mrudula7535, 4 months ago

If sin theta + cosec theta =2 then find sin^19theta +cosec^19theta =??
PLZ HELP CORRECT ANSWER WILL BE MARKED AS BRAINLIEST ​

Answers

Answered by BrainlyRish
8

Appropriate Question :

  • If  \sin \theta + \cosec \theta = 2 \\ . Then , Find the value of  \sin^{19}\theta + \cosec ^{19} \theta \\ .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given :  \sin \theta + \cosec \theta = 2 \\

Exigency to find : The Value of :  \sin^{19}\theta + \cosec ^{19} \theta \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \dag\:\:\bigg\lgroup \sf{  \sin \theta + \cosec \theta = 2 }\bigg\rgroup \\\\

━━━━ Finding Value of :  \sin\theta \:\:\&\:\: \cosec  \theta \\

Now , By Solving the Given :

\qquad \longmapsto \sf \sin \theta + \cosec \theta = 2 \\\\

\dag\:\:\it{ As,\:We\:know\:that\::}\\

  •  \sf \cosec \theta = \dfrac{1}{\sin\theta } \\\\

\qquad \longmapsto \sf \sin \theta + \cosec \theta = 2 \\\\

\qquad \longmapsto \sf \sin \theta + \dfrac{1}{\sin\theta } = 2 \\\\

\qquad \longmapsto \sf \sin \theta + \dfrac{1}{\sin\theta } - 2 = 0  \\\\

\qquad \longmapsto \sf  \dfrac{\sin^2 \theta + 1 - 2\sin\theta}{\sin\theta }  = 0 \\\\

\qquad \longmapsto \sf \sin^2 \theta + 1 - 2\sin\theta  = 0 \times \sin \theta \\\\

\qquad \longmapsto \sf \sin^2 \theta + 1 - 2\sin\theta  = 0  \\\\

\dag\:\:\it{ As,\:We\:know\:that\::}\\

  •  \sf (a - b)^2 = a^2 + b^2 - 2ab  \\\\

\qquad \longmapsto \sf \sin^2 \theta + 1 - 2\sin\theta  = 0  \\\\

\qquad \longmapsto \sf (\sin \theta - 1 )^2  = 0  \\\\

\qquad \longmapsto \sf \sin \theta - 1   = 0  \\\\

\qquad \longmapsto \frak{\underline{\purple{\:\sin\theta  = 1 }} }\bigstar \\

\dag\:\:\it{ As,\:We\:know\:that\::}\\

  •  \sf \cosec \theta = \dfrac{1}{\sin\theta } \\\\

⠀⠀⠀⠀⠀Here, \sin \theta  = 1

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf \cosec \theta = \dfrac{1}{\sin\theta } \\\\

\qquad \longmapsto \sf \cosec \theta = \cancel{\dfrac{1}{1 }} \\\\

\qquad \longmapsto \frak{\underline{\purple{\:\cosec\theta  = 1 }} }\bigstar \\

━━━━ Finding Value of :  \sin^{19}\theta + \cosec ^{19} \theta \\

⠀⠀⠀⠀⠀Here \sin \theta  = 1 \:\:\:\& \:\:\:\: \cosec \theta = 1

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf \sin^{19}\theta + \cosec ^{19} \theta \\

\qquad \longmapsto \sf 1^{19} + 1 ^{19} \\

\qquad \longmapsto \sf 1 + 1 \\

\qquad \longmapsto \bf \bigg( \:\:2 \:\:\bigg)\qquad \longrightarrow \:\: Required \:AnswEr \:\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The\:value \:of\:  \sin^{19}\theta + \cosec ^{19} \theta \:is\:\bf{2}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions