if sin theta+cosec theta=2 then find the value of sin^(10)theta+cosec^(10)theta
Answers
Answered by
56
ANSWER:-
sinθ + cosecθ = 2
Simplifying we get
sinθ + 1/sinθ = 2
sin²θ + 1/sinθ = 2
sin²θ + 1 = 2sinθ
sin²θ - 2sinθ + 1 = 0
→ sin²θ - 2(sinθ)(1) + 1²
It is in the form of a² - 2ab + b² = (a - b)²
→ (sinθ - 1)² = 0
→ sinθ - 1 = 0
→ sinθ = 1
Using
sinθ = 1/cosecθ
→ 1/cosecθ = 1
→ cosecθ = 1
Hence sinθ = 1 & cosecθ = 1
Substituting the values
sin¹⁰θ + cosec¹⁰θ
→ 1¹⁰ + 1¹⁰
→ 1 + 1
Hence, sin¹⁰θ + cos¹⁰θ = 2
Answered by
4
ANSWER :-
↦ sinθ + cosecθ = 2
Simplifying we get
↦ + 1/sinθ = 2
↦ sinθsin²θ + 1/sinθ = 2
↦ sin²θ + 1 = 2sinθ
↦ sin²θ - 2sinθ + 1 = 0
↦ sin²θ - 2(sinθ)(1) + 1²
By using ( a - b )² = a² - 2ab + b²
→ (sinθ - 1)² = 0
→ sinθ - 1 = 0
→ sinθ = 1
Using
sinθ = 1/cosecθ
↦ 1/cosecθ = 1
↦ cosecθ = 1
Hence sinθ = 1 & cosecθ = 1
Substituting the values
sin¹⁰θ + cosec¹⁰θ
↦ 1¹⁰ + 1¹⁰
↦ 1 + 1
Hence, sin¹⁰θ + cos¹⁰θ = 2
Similar questions