if sin theta + cot theta = √3.....then prove that tan theta + cot theta = 1......
Answers
Answered by
2
Answer:
sinФ + cos Ф= √3..............eq 1
to prove tan Ф + cot Ф = 1
equation 1 squaring on both sides we get
(sinФ + cos Ф)² = √3²
using (a+ b)² identity
sin²Ф + cos ²Ф + 2 sinФ cosФ = 3
1 + 2sin Ф cos Ф = 3
2 sinФ cosФ= 3-1
2sinФcosФ=2
sinФcosФ=1 ................eq 2
to proof
tanФ+ cotФ= 1
⇒ sinФ/cosФ + cosФ/sin Ф
taking lcm
sin²Ф + cos²Ф/cosФsinФ
from eq 2 we know sinФ cosФ = 1
⇒sin²Ф +cos²Ф/1 ( we know sin^2 Ф+ cos ^2 Ф = 1)
so we get ,
⇒1/1 = 1
hence proved
hope it helps!!!!!!!!!!!
please mark as brainliest !!!!!!!!!!!!
Answered by
1
Hey
Its simple
Sin Θ + cos Θ =√3
Sin Θ = √3 - cos Θ
tan Θ = √3 - cos Θ/cos Θ
Cot Θ = cos Θ /√3 - cos Θ
tan Θ / cot Θ = 1
Hence proved
❤️❤️
Similar questions