Math, asked by ambu48, 1 year ago

if sin theta equal to a square minus b square by a square + b square find value of other trigonometric ratios

Answers

Answered by MaheswariS
73

\textbf{Given:}

\sin{\theta}=\dfrac{a^2-b^2}{a^2+b^2}

\textbf{To find:}

\text{The value of other trigonometric ratios}

\textbf{Solution:}

\text{Consider,}

\sin{\theta}=\dfrac{a^2-b^2}{a^2+b^2}

\text{Taking reciprocals, we get}

\boxed{\bf\csc{\theta}=\dfrac{a^2+b^2}{a^2-b^2}}

\text{Now}

\cos^2{\theta}=1-\sin^2{\theta}

\cos^2{\theta}=1-(\dfrac{a^2-b^2}{a^2+b^2})^2

\cos^2{\theta}=\dfrac{(a^2+b^2)^2-(a^2-b^2)^2}{(a^2+b^2)^2}

\cos^2{\theta}=\dfrac{(a^2+b^2+a^2-b^2)(a^2+b^2-a^2+b^2)}{(a^2+b^2)^2}

\cos^2{\theta}=\dfrac{(2a^2)(2b^2)}{(a^2+b^2)^2}

\implies\boxed{\bf\cos{\theta}=\dfrac{2ab}{a^2+b^2}}

\text{Taking reciprocals, we get}

\boxed{\bf\sec{\theta}=\dfrac{a^2+b^2}{2ab}}

\text{We know that,}

\tan{\theta}=\dfrac{\sin{\theta}}{\cos{\theta}}

\implies\tan{\theta}=\dfrac{\dfrac{a^2-b^2}{a^2+b^2}}{\dfrac{2ab}{a^2+b^2}}

\implies\boxed{\bf\tan{\theta}=\dfrac{a^2-b^2}{2ab}}

\text{Taking reciprocals, we get}

\boxed{\bf\cot{\theta}=\dfrac{2ab}{a^2-b^2}}

Answered by bhoomika3572
28

Answer:

Here is your Answer

Mark as brainlist Answer and give me thanks

Attachments:
Similar questions
Math, 1 year ago