Math, asked by ramkumar266, 1 year ago

If sin theta is equal to 12 by 13 find the value of sin theta minus cos square theta upon 2 sin theta minus cos theta into 1 upon tangent theta

Answers

Answered by rupali8153gmailcom2
2

 \sin( \alpha )  =  \frac{12}{13}  =  \frac{p}{h}

 {h}^{2}  -  {p}^{2}  =  {b}^{2}

 {13}^{2}  -  {12}^{2}  =  {b}^{2}

 169 - 144 =  {b}^{2}

25 =  {b}^{2}

5 = b

 \frac{ \sin( \alpha ) -  { \cos( \alpha ) }^{2}  }{2 \sin( \alpha )  -  \cos( \alpha ) }  \times  \frac{1}{ \tan( \alpha ) }

 \frac{ \frac{12}{13} -  { (\frac{5}{13} )}^{2}  }{2 \times  \frac{12}{13} -  \ \frac{5}{13}   }  \times  \frac{1}{ \frac{12}{5} }

 \frac{ \frac{156 - 25}{169} }{ \frac{24 - 5}{13} }  \times  \frac{5}{12}

 \frac{ \frac{131}{13} }{19}  \times  \frac{5}{12}

 \frac{131 \times 19}{13}  \times  \frac{5}{12}

 \frac{131 \times 19 \times 5}{13  \times 12}

 \frac{12445}{156}

79.77

hope this answer is helpful

Answered by mohitlilhate17
1

Answer:

its helpful

I hope you like

Attachments:
Similar questions