Math, asked by chaudharymehak2800, 7 hours ago

if sin theta is equal to p by q then the value of tan theta + secant theta​

Answers

Answered by aleikakhumbongmayum
3

This from a fellow friend

Attachments:
Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:sin \theta \:  =  \: \dfrac{p}{q}

We know,

\rm :\longmapsto\:sin \theta \:  =  \: \dfrac{opposite \: side}{hypotenuse}

\rm :\longmapsto\: \dfrac{opposite \: side}{hypotenuse}  = \dfrac{p}{q}

We know, By pythagoras theorem

\rm :\longmapsto\: {hypotenuse}^{2} =  {opposite \: side}^{2}  +  {adjacent \: side}^{2}

\rm :\longmapsto\: {q}^{2} =  {p}^{2}  +  {adjacent \: side}^{2}

\rm :\longmapsto\: {q}^{2} -  {p}^{2}  =   {adjacent \: side}^{2}

\rm :\longmapsto\:  {adjacent \: side} =  \sqrt{ {q}^{2} -  {p}^{2}}

Now,

 \purple{\rm :\longmapsto\:tan\theta  = \dfrac{opposite \: side}{adjacent \: side}}

\rm\implies \:tan\theta  = \dfrac{p}{\sqrt{ {q}^{2} -  {p}^{2}  } }

Now,

 \purple{\rm :\longmapsto\:sec\theta  = \dfrac{hypotenuse}{adjacent \: side}}

\rm\implies \:sec\theta  \:  =  \: \dfrac{q}{\sqrt{ {q}^{2} -  {p}^{2}  } }

Now, Consider

 \purple{\rm :\longmapsto\:tan\theta  + sec\theta }

\rm \:  =  \: \dfrac{p}{\sqrt{ {q}^{2} -  {p}^{2}  } }  + \dfrac{q}{\sqrt{ {q}^{2} -  {p}^{2}  } }

\rm \:  =  \: \dfrac{p + q}{\sqrt{ {q}^{2} -  {p}^{2}  } }

\rm \:  =  \: \dfrac{p + q}{\sqrt{(q + p)(q - p)} }

\rm \:  =  \:  \sqrt{\dfrac{q + p}{q - p} }

Hence,

  \\ \purple{\rm\implies \:\boxed{\tt{ \rm \: tan\theta  + sec\theta  =  \:  \sqrt{\dfrac{q + p}{q - p}}}}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions