if sin theta =k,0<k<1,theta€Q,then tan theta=
Answers
Step-by-step explanation:
sin(θ)=
1
−
1−k
2
,tan(θ)=
k
−
1−k
2
Step-by-step explanation:
1) Since,
k is positive and hence cosine of theta.
=>\thetaθ is in fourth quadrant.
2)
sin(\theta)sin(θ) and tan(\theta)tan(θ) are negative.
We know that,
\begin{gathered}sin^2(\theta)+cos^2(\theta)=1\\ \\= > sin^2(\theta)+k^2=1\\ \\= > sin^2(\theta)=1-k^2\\ \\= > sin(\theta)=-\sqrt{1-k^2}\end{gathered}
sin
2
(θ)+cos
2
(θ)=1
=>sin
2
(θ)+k
2
=1
=>sin
2
(θ)=1−k
2
=>sin(θ)=−
1−k
2
3) Also,
\begin{gathered}1+tan^2(\theta)=sec^2(\theta)\\ \\= > tan^2(\theta)=sec^2(\theta)-1\\ \\= > tan^2(\theta)=\frac{1}{cos^2(\theta)}-1=\frac{1}{k^2}-1=\frac{1-k^2}{k^2}\\ \\ = > tan(\theta)=\frac{-\sqrt{1-k^2}}{k}\end{gathered}
1+tan
2
(θ)=sec
2
(θ)
=>tan
2
(θ)=sec
2
(θ)−1
=>tan
2
(θ)=
cos
2
(θ)
1
−1=
k
2
1
−1=
k
2
1−k
2
=>tan(θ)=
k
−
1−k
2
Hence,
\boxed{tan(\theta)=\frac{-\sqrt{1-k^2}}{k},sin(\theta)=-\sqrt{1-k^2}}
tan(θ)=
k
−
1−k
2
,sin(θ)=−
1−k
2